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Furstenberg’s proof of Szemerédi’s Theorem

Theorem (Szemerédi’s Theorem)

Let A ⊂ {1, . . . ,N} be a set of density α, and suppose that A
contains no arithmetic progressions of length k. Then

α = ok(1).

Every set of positive upper density contains an arithmetic
progression of length k.
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Furstenberg’s proof of Szemerédi’s Theorem

Szemerédi’s Theorem can be deduced from a recurrence statement
in ergodic measure preserving systems.

Theorem (Furstenberg’s Correspondence Principle, 1977)

Let A be a set of integers of positive upper density. Then there
exist an ergodic measure-preserving system (X ,X , µ,T ) and a set
E ∈ X with µ(E ) = d∗(A) such that

µ(T nE ∩ · · · ∩ T knE ) ≤ d∗((A + n) ∩ · · · ∩ (A + kn))

for all integers k ≥ 1 and all n ∈ Z.
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Furstenberg’s proof of Szemerédi’s Theorem

Theorem (Furstenberg Multiple Recurrence, 1977)

Let (X ,X , µ,T ) be an ergodic measure-preserving system, and let
f ∈ L∞(µ) Then

lim inf
N→∞

1

N

N∑
n=1

∫
f (x)T nf (x) T 2nf (x) . . . T knf (x)dµ(x)

is strictly greater than zero.

In order to understand multiple ergodic averages, look at so-called
“characteristic factors”.
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Characteristic factors

Definition

We say a factor Y of X is characteristic for the average

1

Nd

N∑
n1,...,nd=1

T L1(n)f (x) . . . T Lm(n)f (x)dµ(x)

if and only if the difference with

1

Nd

N∑
n1,...,nd=1

T L1(n)E(f |Y )(x) . . . T Lm(n)E(f |Y )(x)dµ(x)

tends to 0 in L2(µ).
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Host-Kra norms

Definition

For f ∈ L∞(µ) and k ∈ N., we define the Host-Kra semi-norms as

|||f |||k :=

(∫
X 2k

f ⊗ · · · ⊗ fdµ[k]

)1/2k

.

These seminorms are nested, in the sense that they satisfy

|||f |||1 ≤ |||f |||2 ≤ · · · ≤ |||f |||k ≤ · · · ≤ ‖f ‖∞,

and can also be defined inductively via the formula

|||f |||2k+1

k+1 = lim
N→∞

1

N

N−1∑
n=0

|||f · T nf |||2k
.
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Characteristic factors

With this definition, every ergodic m.p.s has a natural sequence of
characteristic factors Zk , defined via this sequence of semi-norms.

Definition

Given a measure-preserving system (X ,X , µ,T ), there is a nested
sequence of factors Zk of X such that for any bounded function f
on X

|||f |||k+1 = 0 if and only if E(f |Zk) = 0.

Z1 corresponds to the classical Kronecker factor

Z2 corresponds to the (quadratic) Conze-Lesigne factor

Zk ...
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Structure theorem for characteristic factors

A deep theorem by Host and Kra characterizes the structure of Zk

for general k .

Theorem (Host-Kra, 2006)

For each integer k, the factor Zk is isomorphic to an inverse limit
of k-step nilsystems.
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Example of a 2-step nilsystems

Example

G :=

 1 R R
0 1 R
0 0 1

 Γ :=

 1 Z Z
0 1 Z
0 0 1



Then X = G/Γ is a 2-step nilmanifold. Then the transformation T
defined as translation by

g :=

 1 γ β
0 1 α
0 0 1


together with the Borel σ-algebra X and Haar measure µ defines a
2-step nilsystem.
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Example of a 2-step nilsystems

Example

For the Heisenberg nilsystem, we have

T (x , y , z) = (x + α, y + β + γx , z + γ)

and

T n(x , y , z) = (x + nα, y + nβ +
1

2
n(n + 1)α, z + nγ)

Note that the behaviour is quadratic in n.
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Szemerédi’s Theorem via ergodic theory
Structure of characteristic factors
Leibman’s Theorem

Example of a 2-step nilsystems

Example

For the Heisenberg nilsystem, we have

T (x , y , z) = (x + α, y + β + γx , z + γ)

and

T n(x , y , z) = (x + nα, y + nβ +
1

2
n(n + 1)α, z + nγ)

Note that the behaviour is quadratic in n.

Julia Wolf Minimal characteristic factors for linear systems



Introduction
Minimal characteristic factors for linear systems

Counting linear configurations in uniform sets
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Szemerédi’s Theorem via ergodic theory
Structure of characteristic factors
Leibman’s Theorem

Multiple linear ergodic averages

Proposition

Assume that (X ,X , µ,T ) is ergodic and let d , k ,m ∈ N. If
f ∈ L∞(µ), then

lim sup
N→∞

∥∥∥∥∥∥ 1

Nd

N−1∑
n1,n2,...,nd=0

T L1(n)f (x) . . . T Lm(n)f (x)

∥∥∥∥∥∥
2

� |||f |||m.

The proof is a simple application of Van der Corput’s Lemma.

Question

What is the degree of the minimal characteristic factor for a given
multiple ergodic average?
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Minimal characteristic factors

Theorem (Leibman, 2007)

The factor Z1 is minimal characteristic if and only if the linear
forms are square-independent.

The linear forms are said to be square-independent if
L2

1, L
2
2, . . . , L

2
m are linearly independent (over Z).

Example

Consider the linear forms n + m, 2n + 4m, 3n + 9m, 4n + 16m,
5n + 25m, 6n + 37m.
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Minimal characteristic factors

Theorem (Leibman, 2007)

More generally, the factor Zk is minimal characteristic if and only
if k is the least integer such that Lk+1

1 , Lk+1
2 , . . . , Lk+1

m are linearly
independent.

Idea of the proof:

Use van der Corput to control the multiple ergodic average by
||| · |||k for some k.

This tells us that Zk is a characteristic factor. By the theorem
of Host and Kra, Zk has the structure of a k-step nilmanifold.

Explicitly compute the orbit of the diagonal of the nilmanifold
under the linear actions.
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Remarks:

The linear case is fully resolved.

In the polynomial case, the orbit can be explicitly described
when the nilmanifold is connected, as well as when the
nilmanifold is a torus or a Weyl system.

For the general polynomial case, Leibman produces an
algorithm which yields an upper bound on the degree of the
minimal characteristic factor.
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The discrete Fourier transform

Let us start off by considering a classical Fourier decomposition.

Fourier transform: f̂ (γ) := Ex∈G f (x)γ(x)

Fourier inversion: f (x) =
∑

γ∈bG f̂ (γ)γ(−x)

Parseval’s identity: Ex∈G |f (x)|2 =
∑

γ∈bG |f̂ (γ)|2

Throughout this talk, we will consider G = Z/NZ or G = Fn
p.

Definition

We say a set A ⊆ G is uniform if the largest non-trivial Fourier
coefficient of its characteristic function is small.
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coefficient of its characteristic function is small.
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Counting arithmetic progressions

Fact

If a subset A of G of density α is uniform, then it contains the
expected number α3 of 3-term progressions.

This corresponds to the statement that the Kronecker factor is
characteristic for the ergodic average along 3-term arithmetic
progressions.

Ex ,d∈G 1A(x)1A(x + d)1A(x + 2d)

=
∑
γ∈bG

1̂A(γ)21̂A(−2γ)

= α3 + o(1)
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Counting arithmetic progressions

Fact

Fourier analysis is not sufficient for counting longer progressions

For example, the following set is uniform but contains many more
than the expected number of 4-APs.

A = {x ∈ ZN : |x2| small}

x2 − 3(x + d)2 + 3(x + 2d)2 − (x + 3d)2 = 0

This corresponds to the Furstenberg-Weiss example in ergodic
theory.
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Uniformity norms

Definition (Gowers, 2001)

For any positive integer k ≥ 2, and any function f : G → [−1, 1],
define the Uk -norm by the formula

‖f ‖2k

Uk := Ex ,h1,...,hk∈G

∏
ω∈{0,1}k

f (x +
∑

i

ωihi ).

This definition corresponds to that of the semi-norms ||| · |||k in
ergodic theory.
In particular,

‖f ‖4U2 = Ex ,a,b∈G f (x)f (x + a)f (x + b)f (x + a + b) = ‖f̂ ‖44.
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Counting arithmetic progressions, II

Definition

A set A ⊆ G is said to be quadratically uniform if its balanced
function fA = 1A − α is small in U3.

If a subset A of G is quadratically uniform, then it contains the
expected number of 4-term progressions.

Proposition (Gowers, 2001)

Let f : G → [−1, 1]. Then

|Ex ,d∈G f (x)f (x + d)f (x + 2d)f (x + 3d)| ≤ ‖f ‖U3 .

This is analogous to the statement that the Conze-Lesigne factor is
characteristic for averages along 4-term progressions.
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Counting arithmetic progressions, II

More generally, k-APs are controlled by the Uk−1 norm.

Proposition (Gowers, 2001)

Let f : G → [−1, 1]. Then

|Ex ,d∈G f (x)f (x + d)f (x + 2d) . . . f (x + kd)| ≤ ‖f ‖Uk .

This is proved using multiple applications of the Cauchy-Schwarz
inequality.

Question

What replaces the Host-Kra structure theorem in the finite world?

Julia Wolf Minimal characteristic factors for linear systems



Introduction
Minimal characteristic factors for linear systems

Counting linear configurations in uniform sets
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Szemerédi’s Theorem via harmonic analysis
Inverse theorems and decompositions
True complexity for square-independent systems

Counting arithmetic progressions, II

More generally, k-APs are controlled by the Uk−1 norm.

Proposition (Gowers, 2001)

Let f : G → [−1, 1]. Then

|Ex ,d∈G f (x)f (x + d)f (x + 2d) . . . f (x + kd)| ≤ ‖f ‖Uk .

This is proved using multiple applications of the Cauchy-Schwarz
inequality.

Question

What replaces the Host-Kra structure theorem in the finite world?

Julia Wolf Minimal characteristic factors for linear systems



Introduction
Minimal characteristic factors for linear systems

Counting linear configurations in uniform sets
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An inverse theorem for U3

Theorem (Green-Tao, 2005, Samorodnitsky, 2007)

Suppose ‖f ‖∞ ≤ 1 is such that ‖f ‖U3 ≥ δ. Then there exists a
quadratic phase function φ such that

|Ex f (x)φ(x)| ≥ c(δ).

We shall be deliberately vague here about what we mean by a
quadratic phase function.
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Szemerédi’s Theorem via harmonic analysis
Inverse theorems and decompositions
True complexity for square-independent systems

A classical Fourier decomposition

We can write

f (x) =
∑
γ∈R

f̂ (γ)γ(x) +
∑
t /∈R

f̂ (γ)γ(x),

where R denotes the set of frequencies where the Fourier transform
of f is large. Here

f1 has linear structure
and bounded complexity (→ |R| is small)

and

f2 is uniform in the classical sense (→ small in U2).
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A decomposition into quadratic phases

Many proofs in arithmetic combinatorics proceed via a dichotomy:
a decomposition theorem can often be used to encode such a
dichotomy.

However, there does not seem to be a canonical way to decompose
a function into quadratic phases.
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A decomposition into quadratic phases

We aim for a decomposition of the form

f = f1 + f2,

where

f1 has some sort of quadratic structure
and bounded complexity

and

f2 is quadratically uniform (→ small in U3).
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Szemerédi’s Theorem via harmonic analysis
Inverse theorems and decompositions
True complexity for square-independent systems

A decomposition into quadratic phases

We aim for a decomposition of the form

f = f1 + f2,

where

f1 has some sort of quadratic structure
and bounded complexity

and

f2 is quadratically uniform (→ small in U3).

Julia Wolf Minimal characteristic factors for linear systems



Introduction
Minimal characteristic factors for linear systems

Counting linear configurations in uniform sets
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A first decomposition theorem

Theorem (Green-Tao, 2005)

Let δ > 0. Given f : Fn
p → [−1, 1], there exists d(δ) and a

quadratic factor (B1,B2) of complexity d with together with a
decomposition

f = f1 + f2,

where f1 := E(f |B2) and ‖f2‖U3 ≤ δ.

A quadratic factor is a partition of Fn
p into simultaneous level sets

of at most d linear and quadratic phases.
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A simple decomposition into quadratic phases

Theorem (Gowers-W., 2008)

Let f : Fn
p → C be a function such that ‖f ‖2 ≤ 1. Then for every

δ > 0 there exists M(δ) such that f has a decomposition of the
form

f (x) =
∑

i

λiω
qi (x) + g(x) + h(x),

where the qi are quadratic forms on Fn
p, ‖g‖U3 ≤ δ, ‖h‖1 ≤ δ and∑

i |λi | ≤ M.

Here M can be taken to be exp(C (δ2)−C ).

This is deduced from the inverse theorem via the Hahn-Banach
theorem from functional analysis.
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Szemerédi’s Theorem via harmonic analysis
Inverse theorems and decompositions
True complexity for square-independent systems

A higher-order inverse theorem

Conjecture

Let 0 < δ ≤ 1 and let p be a prime. Let f : Fn
p → C be a function

with ‖f ‖∞ ≤ 1 and ‖f ‖Uk+1 ≥ δ. Then there exists a polynomial
q : Fn

p → Fp of degree k and a constant c(δ) such that

|Ex f (x)ωq(x)| ≥ c(δ).

Recently proved in the case when p ≥ k by Bergelson-Tao-Ziegler
using ergodic theory and a correspondence principle.

The conjecture when p < k had been disproved by Green-Tao and
Lovett-Meshulam-Samorodnitsky (2008).
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Szemerédi’s Theorem via harmonic analysis
Inverse theorems and decompositions
True complexity for square-independent systems

A higher-order inverse theorem

Conjecture

Let 0 < δ ≤ 1 and let p be a prime. Let f : Fn
p → C be a function

with ‖f ‖∞ ≤ 1 and ‖f ‖Uk+1 ≥ δ. Then there exists a polynomial
q : Fn

p → Fp of degree k and a constant c(δ) such that

|Ex f (x)ωq(x)| ≥ c(δ).

Recently proved in the case when p ≥ k by Bergelson-Tao-Ziegler
using ergodic theory and a correspondence principle.

The conjecture when p < k had been disproved by Green-Tao and
Lovett-Meshulam-Samorodnitsky (2008).
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Cauchy-Schwarz complexity

Definition (Green-Tao, 2006)

Let L = (L1, ..., Lm) be a system of m linear forms in d variables.
L is said to have Cauchy-Schwarz complexity k if, after an
appropriate reparametrization, there exists a set of k + 1 variables
that are simultaneously used by only one of the linear forms.

Example

A 4-term progression can be expressed as

(y + 2z + 3w ,−x + z + 2w ,−2x − y + w ,−3x − 2y − z),

and thus has Cauchy-Schwarz complexity 2. More generally,
CSC(k-AP)= k − 2 and CSC(cube of dimension d)= d − 1.
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Cauchy-Schwarz complexity

Proposition (Green-Tao, 2006)

Let f : G → [−1, 1], and let L1, . . . , Lm be a system of
Cauchy-Schwarz complexity k. Then

|Ex1,...,xd∈G

m∏
i=1

f (Li (x1, . . . , xd))| ≤ ‖f ‖Uk+1 .

Question

What is the minimal k such that Uk+1 controls the average over
the linear system?
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True complexity

Recall the example of a uniform set containing too many 4-APs:

A = {x ∈ ZN : |x2| small}

x2 − 3(x + d)2 + 3(x + 2d)2 − (x + 3d)2 = 0

Conjecture (Gowers-W., 2007)

A linear system is controlled by U2 if and only if the functions L2
i

are linearly independent.

More generally, the linear system is controlled by Uk if and only if
k is the least integer such that the functions Lk+1

i are linearly
independent.
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Square independence matters

Theorem (Gowers-W., 2007)

Let G = Fn
p, and let L be a linear system of Cauchy-Schwarz

complexity 2. Then L is controlled by U2 if and only if the LT
i Li

are linearly independent.

Idea of proof:

Decompose the balanced function f into a quadratically
structured part f1 and a quadratically uniform part f2.

By Green and Tao’s Cauchy-Schwarz argument, the
contribution from f2 is negligible since L has CSC 2.

By explicit computation the contribution from f1 is negligible
since L is square-independent and f highly uniform.
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Square independence matters

Some remarks:

This gives an easy proof of Szemerédi-type theorems for
translation invariant square-independent systems.

What is the correct dependence on the U2 norm?

The case Z/NZ is technically much more difficult since we
lack global quadratic correlation in the inverse theorem.

What about systems of higher Cauchy-Schwarz complexity?
What about cube-independent systems?

What about polynomial averages?
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