
THE STRUCTURE OF POPULAR DIFFERENCE SETS

J. WOLF

Abstract. We show that the set of popular differences of a large subset of ZN does
not always contain the complete difference set of another large set. For this purpose
we construct a so-called niveau set, which was first introduced by Ruzsa in [Ruz87] and
later used in [Ruz91] to show that there exists a large subset of ZN whose sumset does
not contain any long arithmetic progressions. In this paper we make substantial use of
measure concentration results on the multi-dimensional torus and Esseen’s Inequality.

1. Introduction

Let G be a finite Abelian group of order N . Suppose that A is a subset of G of cardinality

linear in N , and define the set of γ-popular differences of A to be

Dγ(A) := {x ∈ G : A ∗ −A(x) ≥ γ},

where we have written A for the indicator function of the subset A, and the convolution

f ∗ g of two functions f, g : G → C is defined as f ∗ g(x) = Ey∈Gf(y)g(x− y). In other

words, Dγ(A) is the set of elements of G which can be written as a difference of elements

of A in at least γN different ways. Because we are considering subsets of G of size linear

in N , we shall take γ to be a small constant throughout the paper. Is it true that Dγ(A)

always contains the complete difference set A0−A0 for some large set A0? Our aim in this

paper is to show that this is not always so. More precisely, when G = Fn2 and G = ZN with

N a prime, we prove that there exists a set A of linear size such that any set A0 whose

difference set is contained in Dγ(A) has density o(1). Here o(1) denotes a quantity tending

to 0 as the order N of the group G tends to infinity.

Theorem 1.1. Let G = Fn2 or G = ZN . Then there exists a set A ⊆ G of size greater than

N/3 with the property that any set A0 whose difference set is contained in the set Dγ(A)

of γ-popular differences of A has density o(1).

Apart from being an interesting question in its own right, this problem has arisen in the

context of counting the number of sum-free subsets of an Abelian group G, notably in
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the work of Lev,  Luczak and Schoen [L LS01] and Green and Ruzsa [GR05]. The first

team of authors pursued the following strategy: Suppose every sum-free set A contained

a small subset E with large difference set. The small cardinality of E implies that there

are relatively few such sets, and from the fact that the difference set is large it follows that

there are only few sets A corresponding to a given E, since for a sum-free set A we have

A ⊆ G\(A−A) ⊆ G\(E −E). By taking a random subset of A with suitable probability,

one can obtain a small set E which has the property that its difference set contains the

set Dγ(A) of popular differences of A. Therefore the argument we just sketched implies an

upper bound on the number of sum-free sets A whenever Dγ(A) is large. For those A with

few popular differences, the following proposition from [L LS01] can be used in conjunction

with Kneser’s Theorem to obtain an upper bound in the remaining case. Its proof consists

of a simple averaging argument on the Cayley graph on ZN generated by Dγ(A).

Proposition 1.2. Let X be a subset of G, and let γ be a positive constant. Suppose that

the set of γ-popular differences Dγ(X) satisfies

|Dγ(X)| ≤ 2|X| − 5
√
γN |X −X|.

Then there exists a subset X ′ ⊆ X such that

|X\X ′| ≤
√
γN |X −X| and X ′ −X ′ ⊆ Dγ(X).

Green and Ruzsa [GR05] used this proposition to show that it suffices to remove εN

elements from a set of size greater than (1/3+ε)N with few (more precisely, up to ε3N2/27)

Schur triples in order to make it sum-free, which allows them to strengthen the result of

Lev,  Luczak and Schoen on the number of sum-free subsets of G.

The result we present in this paper shows that the condition on the size of the set of popular

differences in Proposition 1.2 cannot be removed, which by the preceding discussion rules

out simpler approaches to counting sum-free sets of Abelian groups. Before dealing with

the case of the group G = ZN with N a prime in Section 3, we first describe a combinatorial

approach in the model setting of G = Fn2 .

2. Vector Spaces over Finite Fields

The case where G is a finite-dimensional vector space over the field of two elements is often

a good model for what happens in the cyclic groups ZN , and generally easier to deal with

as we have additional geometric structure available. We refer the reader to the excellent

survey [Gre05] for a plentiful supply of examples confirming this assertion.
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For x ∈ Fn2 , let |x| denote the number of non-zero coordinates of the vector x. In this

section we shall show that in the model setting Fn2 , the set A ⊆ Fn2 defined by

A :=

{
x ∈ Fn2 : |x| ≥ n

2
+

√
3n

2

}
is an example of a set whose popular difference set does not contain the complete difference

set of any other large set.

The set A described above is the finite field analogue of a so-called niveau set, which was

originally introduced by Ruzsa in [Ruz87] and later used in [Ruz91] to show that there

exists a subset of ZN whose sumset does not contain any long arithmetic progressions. It

is a versatile construction that has received a fair amount of attention since. For example,

a modified version of such a set can be used to show that Chang’s Theorem on the structure

of the large Fourier spectrum of a function is tight [Gre03]. We shall discuss the original

construction in more detail in Section 3.

First we need to show that the set A thus constructed has the required size, that is, that

it contains a positive proportion of all elements of Fn2 . For the remainder of this section,

we write N := 2n for the size of the group.

Lemma 2.1. The set A ⊆ Fn2 as defined above has size at least (1− exp (−1/2))N .

Proof. By definition, the size of A can be written as

|A| =
n
2
+
√

3n
2∑

j=0

(
n

j

)
,

which equals the probability that a random variable X with binomial distribution B(n, 1/2)

takes values at most
√

3n/2 above its mean. We use a standard Chernov-type tail estimate,

details of which can be found in [J LR00] or Appendix A of [AS00].

Lemma 2.2. Suppose X is a random variable with binomial distribution. Then for any

0 ≤ ε ≤ 1, we have the estimates

P(X ≤ (1− ε)EX) ≤ exp(−ε2EX/2)

and

P(X ≥ (1 + ε)EX) ≤ exp(−ε2EX/3).

It follows immediately from the second inequality that the density of A is at least 1 −
exp (−1/2), which means that A contains more than a third of all elements of Fn2 . �
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Next we show that the set of popular differences Dγ(A) is contained in the complement of

a Hamming ball centred at 1, which is defined as

Bt(1) := {x ∈ Fn2 : |x| ≥ n− t}.

Note that our finite field niveau set A is in fact itself a Hamming ball of radius n/2−
√

3n/2.

Lemma 2.3. Let the set A ⊆ Fn2 and the Hamming ball Bt(1) be defined as above. Then

for any real t ≤ 3n/(4 log(γ−1)), we have

Dγ(A) ⊆ Bt(1)C .

Proof. We shall show that if z ∈ Fn2 is such that |z| = n − t, then the number of ways

of writing z as a difference (or, equivalently, as a sum since we are performing addition

modulo 2) of two elements of A is bounded above by N exp (−3n/4t). So suppose that z

is the sum of two vectors x and y which both lie in A. Without loss of generality, we can

assume that the first t coordinates of z are 0s, and the remaining n− t coordinates are 1s.

Writing

(z1, z2, ...zt, zt+1, ..., zn) ≡ (x1, x2, ...xt, xt+1, ..., xn) + (y1, y2, ...yt, yt+1, ..., yn),

we observe (again without loss of generality) that the number of 1s amongst the coordinates

xt+1, ..., xn is bounded above by (n − t)/2. But we require that x be an element of A, so

that the number of 1s amongst x1, ..., xt is at least n/2+
√

3n/2− (n− t)/2 = t/2+
√

3n/2.

Hence the number of possible vectors x, which for fixed z in turn immediately determine

y, is bounded above by

2
t∑

i= t
2
+
√

3n
2

(
t

i

) 1
2
(n−t)∑
j=0

(
n− t
j

)
.

The first sum can be bounded above by 2t exp (−(
√

3n/t)2t/4) = 2t exp (−3n/4t) by the

first inequality of Lemma 2.2, and the second sum clearly equals 2n−t−1 by the binomial

theorem. The result follows. �

Finally, we need to exploit the geometric information we have just gathered. It is not

unreasonable to expect to be able to bound the size of any set whose difference set is

contained in the complement of a large Hamming ball. A result to this effect was already

proved by Kleitman [Kle66] (see also page 202 of [AS00]).

Here we shall use a simple instance of measure concentration on the discrete cube, which

turns out to adapt well to a more general context. We include the proof for the sake of
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completeness and in order to motivate our work in Section 3.3. More background on the

concentration of measure phenomenon in general compact metric groups will be presented

in the introduction to that section.

Lemma 2.4. Let A0 be any subset of Fn2 with the property that A0 − A0 ⊆ Bt(1)C. Then

the density of A0 is bounded above by exp (−t2/4n).

Proof. For ease of notation let us also define the Hamming ball centred at 0 in the obvious

way by setting

Bt(0) := {x ∈ Fn2 : |x| < t}.

This is just the usual ball associated with the so-called Hamming metric on Fn2 defined by

setting d(x, y) = |x− y|. In other words, the distance between x and y equals the number

of coordinates in which they differ. It is easy to see that

A0 − A0 ⊆ Bt(1)C ⇒ A0 +Bt(1) ∩ A0 = ∅,

which in turn implies that

A0 +Bt(0) ∩ A0 = ∅,

where we have used the bar to denote the set (1, 1, . . . , 1) +A0 of antipodal vectors of A0.

But the set A0 + Bt(0) is just the set of elements of Fn2 at Hamming distance less than

t from some element in A0. It is this observation which inspires us to use the following

classical measure concentration result in the discrete cube, which can be found on page

172 of [McD89] or page 31 of [Led01].

Theorem 2.5. Let µ denote the uniform measure on Fn2 . Given any subset C of Fn2 , we

have the inequality

µ(C +Bt(0)) ≥ 1− exp (−t2/2n)

µ(C)
.

It was shown by Harper [Har66] that this inequality is sharp if the set C is a Hamming ball.

Proof of Lemma 2.4, continued: Applying Theorem 2.5 to the set A0, we immediately

deduce that

µ(A0 +Bt(0)) ≥ 1− exp (−t2/2n)

µ(A0)
,

but the fact that A0 +Bt(0) ∩ A0 = ∅ implies that

1− exp (−t2/2n)

µ(A0)
+ µ(A0) ≤ 1,



6 J. WOLF

which after rearranging concludes the proof. �

Combining Lemma 2.3 and Lemma 2.4, we have proved the main result of this section. It

asserts that Dγ(A) only contains the complete difference set of sets of density o(1).

Theorem 2.6. There exists a set A ⊆ Fn2 of size greater than N/3 with the property that

the set Dγ(A) of γ-popular differences does not contain the complete difference set of any

set of density greater than

exp (−9n/64 log2(γ−1)).

3. From the Model Case to ZN

We now focus our attention on the finite Abelian group ZN with N a large prime, whose

characters are of the form x 7→ e(rx/N) := exp (2πirx/N). In this more general context,

we define a niveau set A ⊆ ZN as the set

A :=

{
x ∈ ZN : <

k∑
i=1

γi(x) ≥ ε
√
k

}
,

for some judiciously chosen set of characters γ1, γ2, ..., γk. The precise value of the param-

eters ε and k will be determined in the course of the argument, but ε should always be

thought of as a fixed constant and k as growing roughly like logN to some small power.

As already mentioned in Section 2, this construction was originally introduced by Ruzsa

in [Ruz87] and later used in [Ruz91] to give an example of a subset of ZN whose sumset

does not contain any long arithmetic progressions. We shall follow his analysis of the

properties of such a set very closely in Section 3.1, where we show that A contains a

positive proportion of all elements of ZN . In order to be able to give an estimate for the

size of A, we need the characters to behave roughly “independently” in the following sense:

Definition. We say that a set of characters (γi(x) = e(rix/N))ki=1 is K-independent if∑k
i=1 λiri ≡ 0 mod N has no solutions satisfying

∑
i |λi| ≤ K. We shall also sometimes

refer to the corresponding k-tuple (ri)
k
i=1 ⊆ Zk

N as K-independent.

We first of all need to make sure that such a set of characters actually exists, otherwise

Definition 3 would be rather pointless.

Lemma 3.1. The number of k-tuples in ZN which are not K-independent is bounded above

by

(2K + 1)kNk−1.
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In other words, there exists a set of k characters with the K-independence property provided

that K satisfies the inequality K < N1/k/4.

Proof. A very crude but effective counting argument will do the job: Every k-tuple which

is not K-independent satisfies by definition an equation in k variables with coefficients

between −K and K. There are at most (2K + 1)k such equations. �

From now on we assume that we are dealing with a set of K-independent characters

whenever we make reference to the niveau set A. Having set up the basics, we now turn to

proving the analogues of Lemmas 2.1, 2.3 and 2.4 in Sections 3.1, 3.2 and 3.3, respectively.

3.1. Estimating the Size of the Niveau Set. The following lower bound on the car-

dinality of the niveau set A is proved in [Ruz91]. It is the analogue of Lemma 2.1 in the

case G = ZN .

Proposition 3.2. Let ε = 1/4 and suppose k � logN/ log logN . Then the set A with

parameters ε and k as defined above has cardinality at least N/3.

For the sake of clarity, self-containedness and because we want to use a very similar ar-

gument later on, we give a concise exposition of Ruzsa’s proof in this section. We shall

proceed in two steps. First, we compare the character sum appearing in the definition of A

to a sum of independent random variables distributed uniformly on the unit circle. Second,

we approximate this sum of independent random variables by a normal distribution, which

allows us to perform explicit computations.

A crucial tool in proving the first step is the following theorem in probability theory, which

is known as Esseen’s Inequality. It dates back to Esseen [Ess45] and independently Berry

[Ber41], but see Shiryayev [Shi84] for a general introductory reference.

Theorem 3.3. Let F1, F2 be probability distribution functions with corresponding char-

acteristic functions φ1, φ2. Assume F ′1 exists and is pointwise bounded by a constant V .

Then

sup
x
|F1(x)− F2(x)| � V

T
+

∫ T

0

|φ1(t)− φ2(t)|
t

dt.

We briefly recall that the characteristic function φX of a random variable X is defined to

be φX(t) := E exp(itX), and that therefore the probability density function of a random

variable is the inverse Fourier transform of its characteristic function. From now on we

shall be using the notation a� b to indicate that there exists an absolute constant c such

that a ≤ cb.
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A special case of Theorem 3.3, also known as the Berry-Esseen Inequality, will help us

complete the second step. It measures the total variation distance between a sum of in-

dependent identically distributed random variables and the normal distribution, in other

words, it gives us information about the rate of convergence in the Central Limit Theo-

rem. More precisely, let X1, X2, . . . , Xk be independent random variables, each distributed

uniformly on the unit circle, and define their sum to be

X :=
k∑
j=1

Xj with real part X̃ := <X.

Let σ :=
√
k/2 denote the standard deviation of X̃. The following formulation of the

Berry-Esseen Inequality is taken from page 374 of [Shi84].

Theorem 3.4. Let X̃ be defined as above, and let Φ denote the standard normal distribu-

tion function. Then

sup
x
|F eX/σ(x)− Φ(x)| � E|X̃|3

σ4
,

provided that the third absolute moment E|X̃|3 is finite.

In order to estimate the difference between two characteristic functions effectively using

Theorem 3.3, we need to consider the moments of the corresponding random variables.

Given a random variable X̃ as defined above, we can express its lth moment µ̃l := EX̃ l as

µ̃l =
1

2l

l∑
i=0

(
l

i

)
µ̃i,l−i by writing µ̃i,j := EX iX

j
.

We set up analogous expressions for the character sum defining A by writing

f(x) :=
k∑
j=1

γj(x) with real part f̃(x) := <f(x) and lth moment ν̃l :=
1

N

N∑
x=1

f̃(x)l.

The lth moment of f̃ can likewise be expanded as

ν̃l =
1

2l

l∑
i=0

(
l

i

)
ν̃i,l−i upon setting ν̃i,j :=

1

N

N∑
x=1

f(x)if(x)j.

Let F eX , F ef denote the obvious distribution functions, and write φ eX , φ ef for the correspond-

ing characteristic functions.
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We are interested in the distribution of f̃ . More precisely, in order to estimate the size of

A we want to count the number of elements x ∈ ZN such that f̃(x) ≥ ε
√
k. This means

that 1− F ef (ε√k) is the quantity we are ultimately interested in.

Our first lemma shows that K-independence guarantees that the lower moments of f̃ and

X̃ are equal.

Lemma 3.5. With the moments µ̃l and ν̃l defined as above and the characters γ1, γ2, . . . , γk

assumed to be K-independent, we have ν̃l = µ̃l for all l = 1, 2, . . . , K.

Proof. Under the assumption of K-independence, it is not too difficult to compute the

mixed moments explicitly. Indeed, we can rewrite ν̃i,j as

1

N

N∑
x=1

(
k∑

m=1

γm(x)

)i( k∑
n=1

γn(x)

)j

=
1

N

∑
m1,...,mi

n1,...,nj

N∑
x=1

e((rm1 + ...+rmi
−rn1− ...−rnj

)x/N).

Whenever i + j ≤ K, the latter sum equals zero by K-independence unless m1, . . . ,mi is

a permutation of n1, . . . , nj, in which case it equals N . We compare this with

µ̃i,j = E

(
k∑

m=1

Xm

)i( k∑
n=1

Xn

)j

=
k∑

m1,...,mi=1

k∑
n1,...,nj=1

EXm1 . . . Xmi
Xn1 . . . Xnj

.

Again, since Xi is independent of Xj for i 6= j, the expectation is non-zero only when

m1, . . . ,mi is a permutation of n1, . . . , nj, in which case it equals 1. Hence ν̃i,j = µ̃i,j for

all i+ j ≤ K, and the result follows as stated. �

In order to usefully estimate the difference between the two characteristic functions we also

need to infer a decent bound on the lth moment µ̃l.

Lemma 3.6. For any even integer l ≤ K and µ̃l defined as above, we have the upper bound

µ̃l ≤ min

{
kl,

l!

2l(l/2)!
kl/2
}
.

Proof. The first part of the bound is obvious, and the second follows from the fact that

the only non-zero mixed moments µ̃i,l−i are those for which i = l/2, when they are of

magnitude kl/2(l/2)!. �

We are now ready to carry out the first step of the argument, namely showing that f̃ and

X̃ are close in distribution using Theorem 3.3.
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Proposition 3.7. Under the same assumptions as before, f̃ and X̃ are close in distribution

in the sense that

sup
x
|F eX(x)− F ef (x)| � min

{
1√
K
,

√
k

K

}
.

Proof. In order to apply Esseen’s Inequality, we first need to verify that F ′eX exists and is

bounded above by a suitable constant. As we have already mentioned, it is a well-known

fact in probability theory that the density function of a random variable is the inverse

Fourier transform of its characteristic function, hence

F ′eX(x) ≤
∫ ∞
−∞
|φ eX(t)|dt.

We thus require the following bounds on the characteristic function φ eX of X̃, which we

state here without proof. The interested reader is referred to [Ruz91] for details.

Lemma 3.8. There exist constants a, b > 0 and T0 > 1 such that φ eX satisfies

|φ eX(t)| ≤

exp (−akt2) |t| ≤ T0σ

(b|t|)−k/2 |t| > T0σ
.

It is immediate to deduce that F ′eX(x) is bounded above by a constant times the standard

deviation σ. Next we observe that by Taylor’s Theorem with remainder we can write

φ eX(t) =
l−1∑
j=1

µ̃j
j!

(it)j + δµ̃l
|t|l

l!
,

and similarly

φ ef (t) =
l−1∑
j=1

ν̃j
j!

(it)j + δν̃l
|t|l

l!

for some |δ| ≤ 1. With the benefit of hindsight, this allows us to justify why we were so

keen to compare moments in the first place. K-independence gave us through Lemma 3.5

that all moments µ̃j and ν̃j up to order K were equal, and thus

|φ eX(t)− φ ef (t)| ≤ 2µ̃K
|t|K

K!
.

It now follows from Theorem 3.3 that for any T > 1,

sup
x
|F eX(x)− F ef (x)| � σ

T
+ µ̃K

TK

K!K
.
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Using the bound on µ̃K derived in Lemma 3.6 and setting T = σ(K!/µ̃K)1/(K+1) followed

by a short compuation concludes the proof of Proposition 3.7. �

We have thus successfully approximated f̃ by X̃. It remains to compare a suitably normal-

ized version of X̃ to a standard normal random variable. The following proposition states

that X̃ is close to a normal distribution with mean 0 and standard deviation σ.

Proposition 3.9. Let X̃ be defined as above, and let Φ denote the standard normal dis-

tribution function. Then

sup
x
|F eX/σ(x)− Φ(x)| � 1

σ
.

Proof. This is a straightforward application of Theorem 3.4. The third absolute moment

E|X̃|3 can be bounded by the Cauchy-Schwarz Inequality as

E|X̃|3 ≤ (E|X̃|2)1/2(E|X̃|4)1/2.

Splitting Xj into real and imaginary parts Xj = Rj + iIj, we first observe that ER2
j = 1/2

and EI2
j = 1/2 as well as ER4

j = 3/8. It is not hard to see that Xi and Xj are independent

if and only if the pairs (Ri, Ii) and (Rj, Ij) are independent (but see page 273 of [Shi84]

for a justification of this claim), which yields

EX̃2 = E
k∑

j,l=1

RjRl =
k∑
j=1

ER2
j +

k∑
j 6=l=1

ERjRl =
k

2

and

EX̃4 = E
k∑
j=1

R4
j +

k∑
j,l=1

ER2
jER2

l =

(
k

2

)2

+
3

4
k.

This implies that E|X̃|3 � σ3, and the result follows as claimed from Theorem 3.4. �

We remark that in fact Ruzsa [Ruz91] proves the slightly stronger error term of σ−2, but

we shall not need to do so here. Proposition 3.9 completes the second step of the argument,

so we are now in a position to estimate the size of the niveau set A.

Proof of Proposition 3.2. Bearing in mind that by definition of the distribution function

F eX/σ(x) = F eX(σx), we deduce from Propositions 3.7 and 3.9 the existence of two constants

c and c′ such that

F ef (ε√k) ≤ F eX(ε
√
k) + cmin

{
1√
K
,

√
k

K

}
≤ Φ(

√
2ε) + cmin

{
1√
K
,

√
k

K

}
+ c′

1√
k
.
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It is easy to compute that for ε ≤ 1/4, the value of the standard normal distribution

function Φ at
√

2ε is bounded above by 2/3, so that the size of the set A is at least N/3.

In fact, the density can be made arbitrarily close to 1/2 by choosing ε small enough. We

also need to ensure that the error term
√
k/K tends to 0 as N tends to infinity, and that

K satisfies K � N1/k. We therefore require that k grow at most like a constant times

logN/ log log(N). This proves Proposition 3.2 for N sufficiently large. �

3.2. Counting the Number of Representations in A−A. This section is devoted to

proving the analogue of Lemma 2.3 for the finite Abelian group ZN . More precisely, we

shall show that the popular difference set Dγ(A) is contained in the complement of a ball

Bt(1), which in this context will be defined as

Bt(1) :=

{
x ∈ ZN :

k∑
i=1

|γi(x) + 1| ≤ t

}
=

{
x ∈ ZN :

k∑
i=1

| cos(πxri/N)| ≤ t

2

}
using the same set γ1, . . . , γk of K-independent characters as the niveau set A. Of course

we hope to be able to take the radius t as large as possible.

Proposition 3.10. Let ε > 0 and suppose that k � logN/ log logN . Let the niveau set A

with parameters ε and k be defined as above, and write t := βk. Then provided that β and

ε are bounded above by a suitable function of γ, we have the inclusion

Dγ(A) ⊆ Bt(1)C .

Let us first observe, as is done in Ruzsa’s original paper [Ruz91], that the complete differ-

ence set A− A is contained in the complement of the ball B4ε
√
k(1). Indeed, for arbitrary

x, y ∈ A, we have

2ε
√
k ≤ <

[
k∑
i=1

γi(x) +
k∑
i=1

γi(y)

]
,

which in turn is bounded above by∣∣∣∣∣
k∑
i=1

γi ((x+ y)/2) (γi ((x− y)/2) + γi (−(x− y)/2))

∣∣∣∣∣ ≤
k∑
i=1

|cos(π(x− y)ri/N)| .

This proves our claim. It stands to reason that the set of popular differences Dγ(A) should

be contained in the complement of a much larger ball around 1. However, a trivial adap-

tation of the method we used in the model setting Fn2 , that is, coordinate-wise counting,

falls short of what is required.
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Recall that we would like to show that for fixed z ∈ Bt(1), the number of representations

of z as a difference x − y with x and y in A is strictly less than γN . In other words, our

aim is to establish that for fixed z ∈ Bt(1), there are few elements x such that both x ∈ A
and x − z ∈ A. This condition is equivalent to counting the number of elements x ∈ ZN

that satisfy both <
∑k

j=1 γj(x) > ε
√
k and <

∑k
j=1 γj(x− z) > ε

√
k, under the assumption

that
∑k

j=1 |γj(z) + 1| = βk with β = t/k. As before, we write

f(x) :=
k∑
j=1

γj(x) with real part f̃(x) := <f(x),

but now we also need

g(x) =
k∑
j=1

γj(x− z) with real part g̃(x) = <g(x).

Thus we are interested in an upper bound on the probability that both f̃ and g̃ are greater

than ε
√
k, under the hypothesis that

∑k
j=1 |γj(z) + 1| = βk. It turns out that when the

parameter β is small enough, the functions f̃ and g̃ are sufficiently negatively correlated

for this probability to be less than γ.

In order to prove this, we shall use techniques very similar to the ones we used to establish

a lower bound on the size of A in the preceding section. We shall first compare the

joint distribution of (f̃ , g̃) with the joint distribution of two sums of appropriately defined

independent random variables, and then compare their distribution to a suitable bi-variate

normal.

It should be obvious at this point that we will need a 2-dimensional analogue of Esseen’s

Inequality, which can be found in [Sad66] and [Ber45] (with better bounds in the former).

Theorem 3.11. Let F1, F2 be 2-dimensional distribution functions, and let φ1, φ2 be the

corresponding characteristic functions. Write φ̃i(s, t) = φi(s, t)−φi(s, 0)φi(0, t) for i = 1, 2,

and set

γ1 := sup
x,y

∂F2(x, y)

∂x
, γ2 := sup

x,y

∂F2(x, y)

∂y
.

Then for any T > 0, the total variation distance supx,y |F1(x, y) − F2(x, y)| is bounded

above by

2

(2π)2

∫ T

−T

∫ T

−T

∣∣∣∣∣ φ̃1(s, t)− φ̃2(s, t)

st

∣∣∣∣∣ dsdt
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plus an additional error term of the form

2

π

∫ T

−T

∣∣∣∣φ1(s, 0)− φ2(s, 0)

s

∣∣∣∣ ds+
2

π

∫ T

−T

∣∣∣∣φ1(0, t)− φ2(0, t)

t

∣∣∣∣ dt+
(6
√

2 + 8
√

3)(γ1 + γ2)

T
.

As a more or less immediate corollary we have the 2-dimensional Berry-Esseen Inequality,

the precise statement of which is taken from [Sad66].

Theorem 3.12. Let X̃ and Z̃ be sums of k independent identically distributed mean-zero

random variables X̃i, Z̃i, respectively. Let Φρ denote the distribution function of a standard

bi-variate normal distribution with correlation ρ. Suppose that X̃ and Z̃ have correlation

ρ, and denote their joint distribution function by F( eX, eZ). Then

sup
x,z
|F( eX/σ, eZ/σ)(x, z)− Φρ(x, z)| �

µ̃abs3,0 + µ̃abs0,3

σ2(1− ρ2)2 min{µ̃3/2
2,0 , µ̃

3/2
0,2 }

,

where we have written

µ̃i,j := EX̃ iZ̃j and µ̃absi,j := E|X̃ iZ̃j|.

Let us put our idea into practice and first compare the joint distribution of f̃ and g̃

to the joint distribution of two sums of sequences of independent random variables with

correlation ρ. In addition to

X :=
k∑
j=1

Xj with real part X̃ := <X,

we now also define

Z :=
k∑
j=1

γj(−z)Xj with real part Z̃ := <Z,

where the Xi are independently and uniformly distributed on the unit circle as in Section

3.1. We first show that (f̃ , g̃) and (X̃, Z̃) are close in distribution using Theorem 3.11.

Proposition 3.13. Let (X̃, Z̃) and (f̃ , g̃) be defined as above, and let their joint distribution

functions be denoted by F( eX, eZ) and F( ef,eg), respectively. Then the total variation distance

satisfies

sup
x,z
|F( eX, eZ)(x, z)− F( ef,eg)(x, z)| � min

{
1√
K
,

√
k

K

}
.
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Proof. We need to consider the characteristic functions

φ( ef,eg)(s, t) =
1

N

N∑
x=1

exp (i(sf̃(x) + tg̃(x))) and φ( eX, eZ)(s, t) = E exp (i(sX̃ + tZ̃)).

It is easy to check that the partial derivatives of F( eX, eZ) are bounded above by a constant

times the standard deviation σ. Indeed, let η(s, t) denote the joint probability density

function of (X̃, Z̃). By definition, we have

sup
x,z

∂F( eX, eZ)(x, z)

∂x
=

∫ z

−∞
η(x, t)dt,

which by positivity of the probability density function η is bounded above by∫ ∞
−∞

η(x, t)dt = F ′eX(x).

The final expression is exactly the same term as in the 1-dimensional case, which we

bounded by a constant times σ using Lemma 3.8. An analogous inequality holds for the

partial derivative with respect to z.

The second and third term in the bound in Theorem 3.11 are bounded above just as in

the 1-dimensional case. It remains to estimate the main error term, and we shall proceed

as before by comparing moments. As in the proof of Proposition 3.2, we can write

φ( eX, eZ)(s, t) =
l−1∑
j=1

ij

j!
E(sX̃ + tZ̃)j + δ

E|sX̃ + tZ̃|l

l!

with |δ| ≤ 1, and similarly with (X̃, Z̃) replaced by (f̃ , g̃). Let’s have a closer look at

E(sX̃ + tZ̃)l, which can be expressed as

l∑
i=1

(
l

i

)
sitl−iEX̃ iZ̃ l−i =

1

2l

l∑
i=1

(
l

i

)
sitl−i

i∑
c=1

l−i∑
d=1

(
i

c

)(
l − i
d

)
EXcX

i−c
ZdZ

l−i−d
.

After defining the mixed moments

ξi,j,c,d := EXcX
i−c
ZdZ

j−d
and θi,j,c,d := Ef(x)cf(x)

i−c
g(x)dg(x)

j−d
,

the expression for the lth moment becomes

E(sX̃ + tZ̃)l =
1

2l

l∑
i=1

(
l

i

)
sitl−i

i∑
c=1

l−i∑
d=1

(
i

c

)(
l − i
d

)
ξi,l−i,c,d.

As in the 1-dimensional case, we need a lemma saying that for independent characters, the

low mixed moments ξi,j,c,d and θi,j,c,d are equal.
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Lemma 3.14. For all 1 ≤ c ≤ i, 1 ≤ d ≤ j and i+ j ≤ K, we have that ξi,j,c,d = θi,j,c,d.

Proof. It is easily checked that under the given conditions both expressions reduce to the

number of sequences (m1, . . . ,mc, n1, . . . , nc) and (m′1, . . . ,m
′
c, n
′
1, . . . , n

′
c) that are permu-

tations of each other. �

We also need to prove a bound on E|sX̃ + tZ̃|l for even l in the style of Lemma 3.6.

Lemma 3.15. For any even integer l ≤ K and X̃, Z̃ defined as above, we have

E|sX̃ + tZ̃|l ≤ kl/2l!

2l(l/2)!
(|s|+ |t|)l.

Proof. This is a straightforward computation just as in the 1-dimensional case. The mo-

ment ξi,j,c,d is easily to be seen non-zero only when 2(c + d) = i + j, in which case its

absolute value is bounded above by kc+d(c+ d)!. The lth moment is therefore bounded by

1

2l

l∑
i=1

(
l

i

)
sitl−i

i∑
c=1

(
i

c

)(
l − i
l/2− c

)
kl/2(l/2)!.

The sum over c in this expression is no greater than

l/2∑
c=1

(
i

c

)(
l − i
l/2− c

)
kl/2(l/2)!

and by Vandermonde convolution, the sum over the binomial coefficients actually equals(
l
l/2

)
. The statement of the lemma now follows as claimed. �

We have now gathered enough information to estimate the main error term in Theorem

3.11. A not too lengthy computation using Lemmas 3.14 and 3.15 concludes the proof of

Proposition 3.13 for the appropriate choice of the parameter T . �

It remains to compare the joint distribution of (X̃, Z̃) to a bi-variate standard normal

distribution, and we shall do so using Theorem 3.12 in the following proposition.

Proposition 3.16. Let X̃ and Z̃ be defined as above, and write F eX, eZ for their joint dis-

tribution function. Let Φρ denote the standard bi-variate normal distribution function with

correlation ρ. Then

sup
x,z
|F( eX/σ, eZ/σ)(x, z)− Φ−1+β(x, z)| � 1

σ1/2
.

Proof. We have already seen in Proposition 3.9 that the third absolute moment of X̃ is

bounded above by σ3. A similar analysis can be carried out for Z̃. For instance, writing
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zj = −zrj/N for r1, . . . , rk ∈ ZN corresponding to the characters γ1, . . . , γk, we find that

EZ̃2 = E(
k∑
j=1

cos 2πzjRj − sin 2πzjIj)
2 =

k∑
j=1

(cos 2πzj)
2ER2

j + (sin 2πzj)
2EI2

j =
k

2
.

Therefore the third absolute moments µ̃abs3,0 and µ̃abs0,3 are both bounded by σ3. Finally, we

need to check that X̃ and Z̃ have the required correlation, so we compute the covariance

EX̃Z̃ = E
k∑
j=1

Rj

k∑
l=1

cos 2πzlRl − sin 2πzlIl =
k∑
j=1

cos 2πzjER2
j = (−1 + β)

k

2

by the condition we imposed on the (zj)
k
j=1 by requiring that z ∈ Bt(1). Thus the correla-

tion, which is always a dimension-less quantity, of the two random variables X̃/σ and Z̃/σ

with mean 0 and variance 1 is

ρ =
EX̃Z̃√
EX̃2EZ̃2

= −1 + β.

Proposition 3.16 now follows from Theorem 3.12. �

Last but not least, now that we have successfully approximated the distribution of (f̃ , g̃)

by a bi-variate normal distribution, we turn to computing the corresponding bi-variate

probability.

Lemma 3.17. Let ε, β, γ > 0 be constants, and let X̃ and Z̃ be bivariate standard normal

random variables with correlation −1 + β. Then

P(X̃ ≥
√

2ε ∧ Z̃ ≥
√

2ε) ≤ γ,

provided that β and ε are sufficiently small compared with γ.

Proof. We shall confine ourselves to asserting that the probability in question is less than

γ provided that β is sufficiently small. This can be made precise using, for example, simple

approximations to the bivariate normal with large correlation coefficient such as those in

[AK94]. �

Summarising our work in this section, we have shown that Dγ(A) is contained in the

complement of a ball Bt(1), where the parameter β = t/k can be taken to be a small

constant depending on γ, that is, the radius t can be taken to be of order k. This compares

favourably with the statement of Lemma 2.3 in the model setting Fn2 , where n = logN

played the rôle of the parameter k.
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3.3. Using Concentration of Measure on the Torus. In this final section we prove the

ZN -analogue of Lemma 2.4, that is, we show that for an appropriately chosen parameter t

the complement of a ball Bt(1) contains only difference sets of sets of density o(1).

Proposition 3.18. Let β be a constant and write t = βk with k �
√

logN . Let A0 be any

subset of ZN with the property that A0 − A0 ⊆ Bt(1)C. Then the density of A0 is bounded

above by exp(−β2k/72).

By considering the map

Ψ : ZN → Tk,

which takes x 7→ (arg γ1(x), arg γ2(x), ..., arg γk(x))/2π, we move the problem to the k-

dimensional torus Tk, where appropriate measure concentration results are known. For an

exhaustive survey of all aspects of measure concentration we recommend the book [Led01],

and in particular Chapter 4 on concentration in product spaces. It puts into context as well

as generalizes the classical probabilistic inequalities by Talagrand, which in turn are based

on martingale results by Hoeffding (1963) and Azuma (1967). The precise statement of

Theorem 3.19 below can be taken from page 71 of [Led01], or page 173 of [McD89], whose

excellent survey article emphasizes applications to combinatorial and discrete structures.

Theorem 3.19. Let G be a compact metric group with a translation invariant metric d

and let

G = G0 ⊇ G1 ⊇ ... ⊇ Gn = {1G}

be a decreasing sequence of closed subspaces of G. Let ai = diam(Gi−1/Gi), and write

l = (
∑n

i=1 a
2
i )

1/2. Let µ be Haar measure on G. Then for any measurable subset E of G,

we have

µ(E +Bd(0, t)) ≥ 1− exp (−t2/2l2)
µ(E)

.

For the application we have in mind, let G = Tk be equipped with normalised product

measure µ and metric d(s, t) =
∑k

i=1 | sin π(si − ti)|. It is easily checked that d is indeed

a translation invariant metric on G which encapsulates the antipodal concept. Setting

Gi = Tk−i, the diameter ai of each quotient Gi−1/Gi equals 1, whence l2 = k. Denote by

Ct(1) the ball

Ct(1) :=

{
x ∈ Tk :

k∑
j=1

| cos(πxi)| ≤
t

2

}
.
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The reader may care to verify that Ct(1) coincides with a ball in the metric d as defined

above of radius t/2 about the point (1/2, 1/2, . . . , 1/2) ∈ Tk. We thus have the following

quantitative statement of measure concentration in Tk with respect to the metric d.

Corollary 3.20. Let the metric d be defined as above, and let E be a measurable subset of

Tk. We have the bound

µ(E + Ct(1)) ≥ 1− exp (−t2/8k)

µ(E)
,

where the bar indicates translation by (1/2, 1/2, . . . , 1/2) mod 1.

Recall that in the model setting Fn2 in Section 2, we used the fact that for any subset

A0 ⊆ Fn2 ,

A0 − A0 ⊆ Bt(1)C ⇒ A0 +Bt(0) ∩ A0 = ∅.

In the group ZN it follows from the fact that Ψ is linear and injective that any subset

A0 ⊆ ZN with the property that A0 − A0 ⊆ Bt(1)C satisfies

Ψ(A0)−Ψ(A0) ⊆ Ψ(Bt(1)C) = Ψ(ZN) \Ψ(Bt(1)) = Ψ(ZN) ∩ Ct(1)C ⊆ Ct(1)C ,

and further that

Ψ(A0) + Ct(1) ∩Ψ(A0) = ∅ ⇒ (Ψ(A0) + Ct/3(1)) + Ct/3(1) ∩ (Ψ(A0) + Ct/3(1)) = ∅.

The set Ψ(A0) + Ct/3(1) is a union of balls in Tk centred at the image points of A0 under

the map Ψ. Corollary 3.20 now gives us a bound on the measure of this set of the form

(1) µ(Ψ(A0) + Ct/3(1)) ≤ exp (−t2/72k).

We are almost done. Because the characters γ1, . . . , γk are K-independent, we expect the

image of ZN under the map Ψ to be roughly uniformly distributed in Tk. As we shall

see shortly, this implies that the translates of the ball Ct/3(1) generate a set of measure

proportional to the density of A0, so that we will be able to infer a bound on this density

from the bound on the measure of Ψ(A0) + Ct/3(1). The remainder of this section serves

to make these remarks more precise.

We first turn to the equidistribution of ZN under the map Ψ. We have already seen in the

preceding sections that K-independence of the characters γ1, . . . , γk gives us rather precise

information about their distribution, and we are about to exploit this fact yet again. Let

us define the discrepancy of a set of points y1, ..., yN in Tk by

disc(y1, . . . , yN) := sup
B∞⊆Tk

∣∣∣∣ |{i : yi ∈ B∞}|
N

− µ(B∞)

∣∣∣∣ ,
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where the supremum is taken over all L∞-balls B∞ ⊆ Tk and µ is, of course, Lebesgue

measure as before. We shall be able to give a bound on the discrepancy of the set Ψ(ZN)

using the following proposition known as the Erdős-Turán-Koksma Inequality. It can be

viewed as a quantitative version of Kronecker’s Equidistribution Theorem and is taken

from page 15 of [DT97].

Proposition 3.21. Let y1, ..., yN be points in Tk, and let K ∈ N. Then the discrepancy

disc(y1, . . . , yN) satisfies the bound

disc(y1, . . . , yN) ≤
(

3

2

)k 2

K + 1
+

∑
0<‖h‖∞≤K

1

r(h)

∣∣∣∣∣ 1

N

N∑
i=1

e(h · yi)

∣∣∣∣∣
 ,

where r(h) =
∏k

i=1 max{1, |hi|} for h = (h1, ..., hk) ∈ Zk.

It should be noted (and is discussed at length in [NP73]) that Proposition 3.21 is very

closely related to the Berry-Esseen Inequality. Its proof is again purely Fourier analytic,

and we use it here as a black box for pure convenience. As an immediate corollary we have

the following result for K-independent characters, once again illustrating the principle that

K-independence of characters is the Fourier analytic (and quantitative) analogue of the

notion of independence of random variables.

Corollary 3.22. Given the map Ψ defined as above by a set γ1, . . . , γk of K-independent

characters, we have the bound

dics(Ψ(ZN))�
(

3

2

)k
1

K
.

In other words,

|{x ∈ ZN : Ψ(x) ∈ B∞η }| = µ(B∞η )N +O((3/2)kN/K)

for all L∞-balls B∞η ∈ Tk of side length η � K−1/k.

Recall that in Section 3 we were forced to choose K � N1/k in order for a set of K-

independent characters of cardinality k to exist. This implies that we are able to resolve

down to subcubes of side length η � N−1/k2
. It is this restriction that is chiefly responsible

for our bound in Theorem 1.1 in the case G = ZN .

Finally, we are able to make the transition from a bound on the measure of Ψ(A0)+Ct/3(1)

to a bound on the density of A0.
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Lemma 3.23. Let k �
√

logN , and let γ1, . . . , γk be a set of K-independent characters.

Let the map Ψ be defined as above. Then for any set A0 ⊆ ZN we have

|A0| ≤ µ(Ψ(A0) + Ct/3(1))N.

Proof. First note that Ct/3(1) always contains the L∞-ball B∞t/3k of side length t/3k = β/3,

which implies

µ(Ψ(A0) + Ct/3(1)) ≥ µ(Ψ(A0) +B∞β/3).

Now divide Tk into η−k subcubes of sidelength η satisfying η � N−1/k2
and η < β/3. This

determines the constant required in the growth rate of k. By averaging and Corollary 3.22,

at least |Ψ(A0)|/ηkN of these subcubes contain at least one point of Ψ(A0). Suppose these

non-empty subcubes are indexed by the set I ⊆ [η−k], so that |I| � |Ψ(A0)|/ηkN . But by

our choice of η the subcubes Bi are smaller than the L∞-balls B∞β/3. It follows that

µ(Ψ(A0) +B∞β/3) ≥ µ (∪i∈IBi) =
∑
i∈I

µ(Bi)�
|A0|
ηkN

ηk,

and therefore we obtain the lemma as stated. �

Lemma 3.23 and Equation (1) combine to conclude the proof of Proposition 3.18. We now

bring together Propositions 3.2, 3.10 and 3.18 in order to state the main result of this

paper.

Theorem 3.24. There exists a set A ⊆ ZN of size greater than N/3 with the property that

any set A0 whose difference set is contained in the set Dγ(A) of γ-popular differences of A

has density

exp (−cγ
√

logN),

where cγ is a small constant depending on γ.

4. Remarks

Our analysis in Section 3 only relied on measure concentration in the d-dimensional torus

and our ability to pick a set of independent characters. Therefore, it is evident that our

methods will yield the statement of Theorem 1.1 in any finite Abelian group.

It would be interesting to establish whether the bounds in Theorem 1.1 could be improved

to give a power-type decay as in Theorem 2.6.

Some interesting observations regarding the question whether Theorem 2.6 is best possible

were recently made by Sanders [San08].
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